

Safe Autonomy Flexible Innovation Testbed (SAFITTM)

Final Presentation

September 6, 2017

Sally C. Johnson Jesse C. Couch

Adaptive Aerospace Group, Inc.

Hampton, VA
sjohnson@adaptiveaero.com

Outline

- Requirements Capture
- SAFITTM's Key Innovative Features
- SAFIT-WrapTM Integrated Flight Protection
- Simulation Experiment
- Status and Future Plans

SAFITTM Requirements Capture

An Unmanned Aircraft System (UAS) platform for safely testing NASA's unproven autonomy applications

- Autonomous systems have characteristics that make them difficult to V&V
 - Learning, adaptation, non-deterministic algorithms
 - Operation in complex environments
 - Multi-vehicle cooperation
- Unique system requirements defined from wide range of NASA research projects
 - Autonomy Incubator
 - UAS Integration in the NAS
 - Adaptive Controls and Controls Upset Research
 - Safety Critical Avionics Systems Research

Goals and Objectives

- Goals:
 - Design UAS testbed platform tailored to support NASA's autonomy research
 - Demonstrate feasibility of key innovative features
- Objectives:
 - Detailed design of SAFITTM UAS testbed
 - Vehicle design; hardware and software functionality
 - SAFIT-Wrap[™] prototype development and simulation demonstration of
 - Maintaining geofencing within a predefined regular geometric area
 - While providing Detect and Avoid from one or more simulated traffic aircraft
 - While ensuring flight envelope protection
 - Procure/integrate key hardware components and demonstrate flow of data
 - Build prototype of vehicle (under cost sharing)
 - Conduct preliminary vehicle flight performance assessment

Goals and Objectives

- Goals:
 - Design UAS testbed platform tailored to support NASA's autonomy research
 - Demonstrate feasibility of key innovative features
- Objectives:
 - ✓ Detailed design of SAFIT[™] UAS testbed
 - Vehicle design; hardware and software functionality
 - ✓ SAFIT-WrapTM prototype development and simulation demonstration of
 - Maintaining geofencing within a predefined regular geometric area
 - While providing Detect and Avoid from one or more simulated traffic aircraft
 - While ensuring flight envelope protection
 - Procure/integrate key hardware components and demonstrate flow of data
 - Buil Focused on improving software
 - corather than building vehicle assessment

Reconfigurable Vehicle Design

- Vertical Take-Off and Landing
 - 10 minute hover with 3-lb payload
- Conventional Take-Off and Landing
 - 30 minute cruise at 40 mph with 6-lb payload
- Wingspan: 9 feet

Reconfigurable Vehicle Design

- Vertical Take-Off and Landing
 - 10 minute hover with 3-lb payload
- Conventional Take-Off and Landing
 - 30 minute cruise at 40 mph with 6-lb payload
- Wingspan: 9 feet

Aero-Propulsive Control System

- Stability and control
- Mimics range of test vehicle performance

Reconfigurable Vehicle Design

- Vertical Take-Off and Landing
 - 10 minute hover with 3-lb payload
- Conventional Take-Off and Landing
 - 30 minute cruise at 40 mph with 6-lb payload
- Wingspan: 9 feet

Variable Levels of Autonomy

- Waypoint-based routes
 - Pre-planned
 - Real-time
- Direct control inputs

Aero-Propulsive Control System

- Stability and control
- Mimics range of test vehicle performance

SAFIT-WrapTM Integrated Flight Protection

Reconfigurable Vehicle Design

- Vertical Take-Off and Landing
 - 10 minute hover with 3-lb payload
- Conventional Take-Off and Landing
 - 30 minute cruise at 40 mph with 6-lb payload
- Wingspan: 9 feet

Variable Levels of Autonomy

- Waypoint-based routes
 - Pre-planned
 - Real-time
- Direct control inputs

Aero-Propulsive Control System

- Stability and control
- Mimics range of test vehicle performance

Reconfigurable Vehicle Design

- Reconfigurable design enables wide range of mission scenarios
 - Vertical Takeoff and Landing (VTOL)
 - Quad tiltrotor
 - Conventional Takeoff and Landing (CTOL) configuration
 - 40 mph cruise
 - Redundant control surfaces

- Trade study of alternative aero-propulsive power options
 - Internal combustion generator vs all electric
- Modular design
 - 2 wing panels, tail booms, separable empennage, 4 rotor trunnions
 - Access panels for payload modules

Structure & Materials

- Thin-wall Aluminum Fuselage Tubes
- Carbon Fiber Joiner & Trunnion Tubes
- High Density Foam & Fiberglass Surfaces
- Aeromat & Fiberglass Panels
- Fiberglass Nose
- Poplar, Birch Ply Bulkheads
- Aluminum Landing Gear
- Aluminum Motor Mounts

Propulsion

- Using <u>eCalc</u>, iterated on propulsion setups assuming a 27lb max weight. Hover: ~15min, Cruise: ~40min-1hr
 - Good past experiences with Hacker Motors, Castle ESCs, and APC propellers

2" L 1.6" OD 0.6lb

4x Hacker A40-10L-14p

6.8" x 2.9" x 2.7" 4.2lb

2x 16000mah 6s2p Lipo (22.2V nom)

4x Castle Phoenix Edge 75A

2x 15x10E, 2x 15x10EP

Range of Performance

- Mimics range of vehicle performance by setting limiting parameters:
 - turn rate
 - climb rate
 - power
- Can be changed in-flight
- Features redundant control surfaces to support testing of control upset research systems; resilient control

Variable Autonomy

- Fully autonomous path planning
 - Following route produced in real-time by autonomous path-planning system
 - Future Autoland/Takeoff Capability
- Following path preloaded or provided in real-time from Ground Control Station
- Manual control
 - From Ground Control Station
 - Or direct control inputs from test system
- All subject to the protections of SAFIT-Wrap[™]

SAFIT-WrapTM Integrated Flight Protection

- Ensures safe flight testing of unproven software
- Integrated flight protection
 - Traffic avoidance
 - Obstacle avoidance
 - Geospatial containment
 - Flight envelope protection
- Limited-capability prototype completed
- Ground Control Station
 - Situation Awareness
 - Alerting status

Wrapper Paradigm

External Environment

Reliable Solution

WRAPPER

Checks outputs for

- Correctness: Solution meets full correctness criteria
- Reasonableness: Solution meets reasonableness criteria
- <u>Safety:</u> Solution is consistent with safety criteria

Potential Solution

AUTONOMOUS APPLICATION

Plans optimal solution using

- Adaptation to changing environment and mission
- Learning from past successes and mistakes
- Complex, nondeterministic logic

Partitioning

- Certificatable wrapper
- Unproven application
- Timing issues

Wrapper provides

- Monitoring
- Fail-safe solution if needed

Small UAS Traffic Avoidance in an Urban Environment

Manned aircraft under Visual Flight Rules

- Human judgement used to "See And Avoid" and remain "Well Clear" of traffic
- Traffic alert and Collision Avoidance System (TCAS) Near-Mid-Air Collision (NMAC) cylinder

Radius: 500 ft

Half-height: 100 ft

Traffic avoidance between UAS

- On-board systems use "Detect And Avoid" algorithms to automatically remain a predefined "Well Clear" distance from traffic
- DAA Well Clear has been defined for large UAS integrated in the NAS
- NMAC and Well Clear have yet to be defined for small urban UAS operations
 - Maneuvering in cluttered environments
 - Slower speeds than civil transports
 - Nimble maneuvering

Urban Maneuvering

- Traffic and Obstacle Avoidance designed for urban maneuvering
 - NASA's UAS Traffic Management (UTM)
 - "Flexibility where possible and structure where necessary"
 - Where multiple UAS are operating
 - Vehicles in pre-defined lanes
 - Centralized UTM deconfliction
 - Onboard separation assurance may be needed for non-normal and offnominal events
 - Vehicles straying out of lanes
 - Timing constraints missed
 - Suburban and rural UAS traffic
 - Unlikely to have UTM centralized deconfliction
 - Onboard separation assurance may be needed

Traffic Avoidance

- Candidate NMAC and Well Clear Volumes developed
- Radius based on 10 ft wingspan
- Height based on altitude sensing accuracy at low altitudes
- Look-ahead time τ = 4 8 s for detecting conflicts based on ability to turn at 30° per second
- SAFITTM prototype uses a NASA traffic avoidance algorithm

Obstacle Avoidance

- Building buffer B_B of 10, 15, and 20 ft
- Building look-ahead time B_L of 2, 5, and 8 s
- Unique SAFITTM obstacle avoidance algorithm paths tangentially to obstacles

Geospatial Containment

- Vertical buffer prevents ground collision as well as ceiling violation
- Large horizontal buffer due to NASA's flight safety concerns
- Unique SAFIT[™] geospatial containment algorithm

Simulation Experiment

Batch simulation of small UAS maneuvering in an urban environment

- Conventional flight (no hovering) at 25-50 mph
- Typical urban streets with sidewalks: 50, 70, and 90 ft width
- Oncoming traffic violating lane rules
- Crossing traffic at intersections
- Flight ceiling of 400 ft AGL
- Ownship position uncertainty (< 5 ft), but no traffic surveillance error
- 7550 total runs

Simple resolution maneuvers were used

- Heading change and climb or descent to immediately resolve conflict
- Purpose: Establish feasibility of simple algorithms

Key Experiment Results (1 of 2)

- A small UAS was shown to successfully avoid traffic between buildings 70 ft apart, including multi-vehicle conflicts
- A buffer of 10 ft appears to be adequate to protect against building collisions
 - Tuning of building look-ahead time vs. buffer size
 - Increased look-ahead time may preclude entering curved streets or approaching T intersections

- Multi-vehicle conflicts can be handled within 50 ft maneuvering corridor
 - 8 s traffic look-ahead time required
 - 4 s traffic look-ahead time resulted in several NMACs and building collisions

Key Experiment Results (2 of 2)

- An additional buffer of 5 ft outside the Well Clear Volume appears to be adequate to protect against Well Clear violations
 - Necessary due to navigation/position uncertainty
 - Initial maneuvers were sometimes insufficient to avoid Well Clear violation
- Candidate Well Clear and NMAC volumes were developed for small UAS maneuvering in an urban environment
 - The Well Clear Volume was shown to protect against NMACs in challenging scenarios
- Feasibility of simple resolution maneuvers was established
 - Appropriate for simple encounters in low traffic density
 - Shown to be effective in complex multi-vehicle conflicts
 - Suitable as supplement to UTM

Publications

Two papers presented at AIAA Aviation Technology, Integration, and Operations Conference, June 2017:

- Johnson, Sally, and Couch, Jesse, "A Wrapper Paradigm for Trusted Implementation of Autonomy Applications"
- Johnson, Sally, Petzen, Alexander, and Tokotch, Dylan,
 "Exploration of Detect-and-Avoid and Well-Clear Requirements for Small UAS Maneuvering in an Urban Environment"

Current and Future Work (1 of 2)

- AAG plans to build and fly our SAFITTM vehicle in the future, when we have a customer that needs its unique capabilities
- AAG is in the process of implementation and flight demonstration of prototype SAFIT-Wrap[™] on two AAG-owned Mini SkyHunter Aircraft to be completed by November 2017
- AAG is in the process of marketing our SAFIT[™] testbed to NASA's research projects
 - Safe flight evaluation of unproven autonomy applications
 - Full-service support:
 - Experiment Design/Reviews
 - Algorithm Development
 - Software and Hardware Integration
 - IRB and ASRB Approvals

- Flight Operations
- Data Collection and Analysis
- Demos and Technical Presentations
- Report Writing

Current and Future Work (2 of 2)

AAG was awarded a NASA 2017 Phase I SBIR to generate a strategy for developing, verifying and certifying a high-integrity version of SAFITTM for UAS

Our Product Vision:

- A high-integrity flight management system and ground control station
 - to support safe operation of multiple UAS
 - across a wide range of commercial and research missions
 - including Beyond Visual Line of Sight operations
 - certified for commercial UAS operations under a future standard
- To be marketed as a commercial product
 - Marketed to commercial UAS manufacturers as an optional flight management system
 - Marketing of high-integrity core functionality for other developers to build upon
- Future spin-off version to support unpiloted passenger aircraft for On Demand Mobility

Is There a Commercial Need for a High-Integrity Version of SAFITTM?

- ArduPilot, hosted on PixHawk hardware, is the most popular flight management system for UAS
 - Open source software is continually updated with new features, such as obstacle avoidance and geospatial containment; unstable and unreliable
 - Hardware and connections are unreliable
- Major ArduPilot/PixHawk Issues AAG Experienced in the Field:
 - Compass "inconsistency" on new hardware
 - Brand new out of the box hardware would have launch denial faults
 - Unstable degraded flight
 - GPS/Compass sensor came off the mast; aircraft was difficult to control and dangerous even manually flying
 - Fly-aways
 - In a couple of instances the UAV would suddenly change flight modes without warning and fly away

V&V Strategy for High-Integrity SAFITTM

Formal methods

- Applied to specification, not code
- Careful design and analysis of design are key
- Covers all possible combinations of inputs
- Boolean logic: frequently reveals corner cases with unexpected behavior
- Real math: error bounding on approximations

Ultra-high-integrity

- Formal specification of algorithms
- Verification that specification satisfies limited safety properties
- Manual analysis and extensive testing for correct implementation

High-integrity

 Manual analysis and extensive testing for correct implementation

Low-pedigree

Manual analysis and testing

Partitioning

 Simple, ultra-high reliability code must be separated from complex, unproven code

Concluding Remarks

- The LEARN SAFIT[™] grant enabled AAG to
 - Develop a UAS testbed capability to support a wide range of NASA's research projects, including autonomy research
 - Initiate development of a flight management system for safe implementation of autonomous UAS operations in the National Airspace System
- The key barrier to widespread use of autonomy is V&V
 - No easy answers, but we believe a high-integrity version of SAFITTM can help
- The FAA has not yet adopted a certification standard for UAS in the National Airspace System
 - Maneuvering autonomously
 - Single operator handling multiple UAS
 - Beyond Visual Line of Sight operations
- We plan to work with the FAA to ensure that the V&V strategy for High-Integrity SAFITTM will be sufficient for the future standard